factor of 1000, and the density decreases by a factor of 1000.

13.4 Kinetic Theory: Atomic and Molecular Explanation of
Pressure and Temperature

We have developed macroscopic definitions of pressure and temperature. Pressure is the force divided by the area on which the
force is exerted, and temperature is measured with a thermometer. We gain a better understanding of pressure and
temperature from the kinetic theory of gases, which assumes that atoms and molecules are in continuous random motion.

Figure 13.20 When a molecule collides with a rigid wall, the component of its momentum perpendicular to the wall is reversed. A force is

thus exerted on the wall, creating pressure.

Figure 13.20 shows an elastic collision of a gas molecule with the wall of a container, so that it exerts a force on the wall (by

Newton's third law). Because a huge number of molecules will collide with the wall in a short time, we observe an average force

per unit area. These collisions are the source of pressure in a gas. As the number of molecules increases, the number of collisions

and thus the pressure increase. Similarly, the gas pressure is higher if the average velocity of molecules is higher. The actual

relationship is derived in the Things Great and Small feature below. The following relationship is found.:
1 —

PV = 3va2’ 13.42

where P is the pressure (average force per unit area), V is the volume of gas in the container, N is the number of molecules in

the container, m is the mass of a molecule, and V2 is the average of the molecular speed squared.

What can we learn from this atomic and molecular version of the ideal gas law? We can derive a relationship between
temperature and the average translational kinetic energy of molecules in a gas. Recall the previous expression of the ideal gas
law:

PV = NkT. 13.43

Equating the right-hand side of this equation with the right-hand side of PV = %va_z gives

1 J—
5va2 = NkKT. 13.44




Making Connections: Things Great and Small—Atomic and Molecular Origin of Pressure
in a Gas

Figure 13.21 shows a box filled with a gas. We know from our previous discussions that putting more gas into the box
produces greater pressure, and that increasing the temperature of the gas also produces a greater pressure. But why should
increasing the temperature of the gas increase the pressure in the box? A look at the atomic and molecular scale gives us
some answers, and an alternative expression for the ideal gas law.

The figure shows an expanded view of an elastic collision of a gas molecule with the wall of a container. Calculating the
average force exerted by such molecules will lead us to the ideal gas law, and to the connection between temperature and
molecular kinetic energy. We assume that a molecule is small compared with the separation of molecules in the gas, and
that its interaction with other molecules can be ignored. We also assume the wall is rigid and that the molecule’s direction
changes, but that its speed remains constant (and hence its kinetic energy and the magnitude of its momentum remain
constant as well). This assumption is not always valid, but the same result is obtained with a more detailed description of
the molecule’s exchange of energy and momentum with the wall.
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Figure 13.21 Gas in a box exerts an outward pressure on its walls. A molecule colliding with a rigid wall has the direction of its velocity
and momentum in the x-direction reversed. This direction is perpendicular to the wall. The components of its velocity momentum in

the y- and z-directions are not changed, which means there is no force parallel to the wall.

If the molecule’s velocity changes in the x-direction, its momentum changes from —mv, to +mv;. Thus, its change in
momentum is Amy = +mv,— (—mv, ) = 2mv;. The force exerted on the molecule is given by

Ap  2mvy,
F=—= . 13.45
At At

There is no force between the wall and the molecule until the molecule hits the wall. During the short time of the collision,
the force between the molecule and wall is relatively large. We are looking for an average force; we take At to be the average
time between collisions of the molecule with this wall. It is the time it would take the molecule to go across the box and back
(a distance 2/) at a speed of v,.. Thus At = 2[/v,, and the expression for the force becomes

2mvy my?

= = 46
e 1 14

This force is due to one molecule. We multiply by the number of molecules N and use their average squared velocity to find
the force




Thus,

or

Substituting %vz into the expression for F' gives

The pressure is F/A, so that we obtain

F
P=—
A

V2

=v§+v§+v§.

Because the velocities are random, their average components in all directions are the same:

vi=vi =1l
V=312,
— 1=
7 7
vi= v
3
—
my
F=N——-
3l

_ mv_z_lev_2
T34l 3 vV

where we used V = Al for the volume. This gives the important result.

1. —
PV = gva

This equation is another expression of the ideal gas law.

13.47

where the bar over a quantity means its average value. We would like to have the force in terms of the speed v, rather than
the x-component of the velocity. We note that the total velocity squared is the sum of the squares of its components, so that

13.48

13.49

13.50

13.51

13.52

13.53

13.54

We can get the average kinetic energy of a molecule, %mv2 , from the right-hand side of the equation by canceling N and

multiplying by 3/2. This calculation produces the result that the average kinetic energy of a molecule is directly related to

absolute temperature.

— 1 = 3
KE=§mv2=§kT

The average translational kinetic energy of a molecule, KE, is called thermal energy. The equation KE =

1
2

13.55

V2 = %kTis a

molecular interpretation of temperature, and it has been found to be valid for gases and reasonably accurate in liquids and

solids. It is another definition of temperature based on an expression of the molecular energy.

It is sometimes useful to rearrange KE = %mv2 = %kT, and solve for the average speed of molecules in a gas in terms of

[— | 3kT
V2 = Vms = )
m

temperature,

where Vi stands for root-mean-square (rms) speed.

@ EXAMPLE 13.10

13.56

Calculating Kinetic Energy and Speed of a Gas Molecule
(2) What is the average kinetic energy of a gas molecule at 20.0°C (room temperature)? (b) Find the rms speed of a nitrogen




molecule (N3 ) at this temperature.
Strategy for (a)

The known in the equation for the average kinetic energy is the temperature.

— 1 = 3
KE = Emv2 = EkT 13.57

Before substituting values into this equation, we must convert the given temperature to kelvins. This conversion gives

T =(20.0 + 273) K =293 K.
Solution for (a)

The temperature alone is sufficient to find the average translational kinetic energy. Substituting the temperature into the
translational kinetic energy equation gives

3 3
KE = JkT= 3 (138 x 107 J/K) (293 K) = 6.07 x 107" J. 13.58

Strategy for (b)

Finding the rms speed of a nitrogen molecule involves a straightforward calculation using the equation

~ [3KT
Vo =Vms = ’ 1359
m

but we must first find the mass of a nitrogen molecule. Using the molecular mass of nitrogen Ny from the periodic table,

_2(14.0067) x 10 kg/mol
6.02 x 10% mol™!

=4.65%x 107 kg. 13.60

Solution for (b)

Substituting this mass and the value for k into the equation for Vi yields
3kT 3(1.38x 10 J/K) (293 K)
Vims =1/ — = —¢ =511 m/s. 13.61
m 4.65x 107 kg

Note that the average kinetic energy of the molecule is independent of the type of molecule. The average translational kinetic

Discussion

energy depends only on absolute temperature. The kinetic energy is very small compared to macroscopic energies, so that we do
not feel when an air molecule is hitting our skin. The rms velocity of the nitrogen molecule is surprisingly large. These large
molecular velocities do not yield macroscopic movement of air, since the molecules move in all directions with equal likelihood.
The mean free path (the distance a molecule can move on average between collisions) of molecules in air is very small, and so the
molecules move rapidly but do not get very far in a second. The high value for rms speed is reflected in the speed of sound,
however, which is about 340 m/s at room temperature. The faster the rms speed of air molecules, the faster that sound
vibrations can be transferred through the air. The speed of sound increases with temperature and is greater in gases with small
molecular masses, such as helium. (See Figure 13.22.)
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Figure 13.22 (a) There are many molecules moving so fast in an ordinary gas that they collide a billion times every second. (b) Individual



molecules do not move very far in a small amount of time, but disturbances like sound waves are transmitted at speeds related to the

molecular speeds.

Making Connections: Historical Note—Kinetic Theory of Gases

The kinetic theory of gases was developed by Daniel Bernoulli (1700-1782), who is best known in physics for his work on
fluid flow (hydrodynamics). Bernoulli’s work predates the atomistic view of matter established by Dalton.

Distribution of Molecular Speeds

The motion of molecules in a gas is random in magnitude and direction for individual molecules, but a gas of many molecules
has a predictable distribution of molecular speeds. This distribution is called the Maxwell-Boltzmann distribution, after its
originators, who calculated it based on kinetic theory, and has since been confirmed experimentally. (See Figure 13.23.) The
distribution has a long tail, because a few molecules may go several times the rms speed. The most probable speed v}, is less than
the rms speed Vs . Figure 13.24 shows that the curve is shifted to higher speeds at higher temperatures, with a broader range of
speeds.
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Figure 13.23 The Maxwell-Boltzmann distribution of molecular speeds in an ideal gas. The most likely speed v;, is less than the rms speed

Vs - Although very high speeds are possible, only a tiny fraction of the molecules have speeds that are an order of magnitude greater than

Vrms -

The distribution of thermal speeds depends strongly on temperature. As temperature increases, the speeds are shifted to higher
values and the distribution is broadened.



Prabability

Y

velocity v (m/s)

Figure 13.24 The Maxwell-Boltzmann distribution is shifted to higher speeds and is broadened at higher temperatures.

What is the implication of the change in distribution with temperature shown in Figure 13.24 for humans? All other things being
equal, if a person has a fever, he or she is likely to lose more water molecules, particularly from linings along moist cavities such
as the lungs and mouth, creating a dry sensation in the mouth.

@ EXAMPLE 13.11

Calculating Temperature: Escape Velocity of Helium Atoms
In order to escape Eartl's gravity, an object near the top of the atmosphere (at an altitude of 100 km) must travel away from

Earth at 11.1 km/s. This speed is called the escape velocity. At what temperature would helium atoms have an rms speed equal to
the escape velocity?

Strategy

Identify the knowns and unknowns and determine which equations to use to solve the problem.

Solution

1. Identify the knowns: v is the escape velocity, 11.1 km/s.

2. Identify the unknowns: We need to solve for temperature, 7. We also need to solve for the mass m of the helium atom.
3. Determine which equations are needed.

- To solve for mass m of the helium atom, we can use information from the periodic table:

molar mass
= . 13.62
number of atoms per mole
- To solve for temperature T, we can rearrange either
— 1 = 3
E=—m? =kl 13.63
2 2
or
— 3kT
VI=Vms =1/ — 13.64
m
toyield
2
my
T=——, 13.65
3k

where k is the Boltzmann constant and m is the mass of a helium atom.

4. Plug the known values into the equations and solve for the unknowns.



_ molar mass _4.0026 x 1073 kg/mol
 number of atoms per mole 6,02 x 1023 mol

=6.65x 107 kg 13.66

(6.65% 1072 kg) (11.1 x 10° mJs)” )
T= 3 (1.38 <105 J/K) =198 x 10" K 13.67

Discussion

This temperature is much higher than atmospheric temperature, which is approximately 250 K (-=25°C or —10°F) at high
altitude. Very few helium atoms are left in the atmosphere, but there were many when the atmosphere was formed. The reason
for the loss of helium atoms is that there are a small number of helium atoms with speeds higher than Earth’s escape velocity
even at normal temperatures. The speed of a helium atom changes from one instant to the next, so that at any instant, there is a
small, but nonzero chance that the speed is greater than the escape speed and the molecule escapes from Earth’s gravitational
pull. Heavier molecules, such as oxygen, nitrogen, and water (very little of which reach a very high altitude), have smaller rms
speeds, and so it is much less likely that any of them will have speeds greater than the escape velocity. In fact, so few have speeds
above the escape velocity that billions of years are required to lose significant amounts of the atmosphere. Figure 13.25 shows the
impact of a lack of an atmosphere on the Moon. Because the gravitational pull of the Moon is much weaker, it has lost almost its
entire atmosphere. The comparison between Earth and the Moon is discussed in this chapter’s Problems and Exercises.

Figure 13.25 This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as though it was
taken at night with a large spotlight. In fact, the light is coming from the Sun. Because the acceleration due to gravity on the Moon is so low
(about 1/6 that of Earth), the Moon’s escape velocity is much smaller. As a result, gas molecules escape very easily from the Moon, leaving
it with virtually no atmosphere. Even during the daytime, the sky is black because there is no gas to scatter sunlight. (credit: Harrison H.

Schmitt/NASA)

) CHECK YOUR UNDERSTANDING

If you consider a very small object such as a grain of pollen, in a gas, then the number of atoms and molecules striking its
surface would also be relatively small. Would the grain of pollen experience any fluctuations in pressure due to statistical
fluctuations in the number of gas atoms and molecules striking it in a given amount of time?

Solution

Yes. Such fluctuations actually occur for a body of any size in a gas, but since the numbers of atoms and molecules are immense
for macroscopic bodies, the fluctuations are a tiny percentage of the number of collisions, and the averages spoken of in this
section vary imperceptibly. Roughly speaking the fluctuations are proportional to the inverse square root of the number of
collisions, so for small bodies they can become significant. This was actually observed in the 19th century for pollen grains in
water, and is known as the Brownian effect.




Gas Properties

Pump gas molecules into a box and see what happens as you change the volume, add or remove heat, change gravity, and
more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other. Click

to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/gas-properties)

13.5 Phase Changes

Up to now, we have considered the behavior of ideal gases. Real gases are like ideal gases at high temperatures. At lower
temperatures, however, the interactions between the molecules and their volumes cannot be ignored. The molecules are very
close (condensation occurs) and there is a dramatic decrease in volume, as seen in Figure 13.26. The substance changes from a
gas to a liquid. When a liquid is cooled to even lower temperatures, it becomes a solid. The volume never reaches zero because of
the finite volume of the molecules.

Ideal gas behavior

Volume, V'
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Figure 13.26 A sketch of volume versus temperature for a real gas at constant pressure. The linear (straight line) part of the graph
represents ideal gas behavior—volume and temperature are directly and positively related and the line extrapolates to zero volume at
—273.15°C, or absolute zero. When the gas becomes a liquid, however, the volume actually decreases precipitously at the liquefaction

point. The volume decreases slightly once the substance is solid, but it never becomes zero.

High pressure may also cause a gas to change phase to a liquid. Carbon dioxide, for example, is a gas at room temperature and
atmospheric pressure, but becomes a liquid under sufficiently high pressure. If the pressure is reduced, the temperature drops
and the liquid carbon dioxide solidifies into a snow-like substance at the temperature — 78°C. Solid CO, is called “dry ice.”
Another example of a gas that can be in a liquid phase is liquid nitrogen (LN3 ). LN, is made by liquefaction of atmospheric air
(through compression and cooling). It boils at 77 K (—196°C) at atmospheric pressure. LN is useful as a refrigerant and allows
for the preservation of blood, sperm, and other biological materials. It is also used to reduce noise in electronic sensors and
equipment, and to help cool down their current-carrying wires. In dermatology, LN is used to freeze and painlessly remove
warts and other growths from the skin.

PV Diagrams

We can examine aspects of the behavior of a substance by plotting a graph of pressure versus volume, called a PVdiagram.
When the substance behaves like an ideal gas, the ideal gas law describes the relationship between its pressure and volume. That
is,

PV = NKT (ideal gas). 13.68

Now, assuming the number of molecules and the temperature are fixed,

PV = constant (ideal gas, constant temperature). 13.69

For example, the volume of the gas will decrease as the pressure increases. If you plot the relationship PV = constant ona PV
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